If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-140x-96=0
a = 6; b = -140; c = -96;
Δ = b2-4ac
Δ = -1402-4·6·(-96)
Δ = 21904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{21904}=148$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-148}{2*6}=\frac{-8}{12} =-2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+148}{2*6}=\frac{288}{12} =24 $
| 5.2x+3+2=7 | | 2x+1=8x-21 | | 91/13=x/8 | | x6= | | z(z+2)(z−1)=0. | | 15+10(4)=x | | 36+4x=-4(x+3) | | -2b+28=-16b-14 | | 15+10(4)=y | | -3-2(-6x-2)=85 | | -91=7(1+2m) | | -5+5x=6(4-4x) | | 32x/3+x/9=42 | | 4+n|3=2 | | 2=(3x)^1/3 | | 17=-5n+2 | | 7+7k=-7(-6k+4) | | 27+7n=-6(n+6)-8 | | -38+8n=2(7n+5) | | 37-7x=6(-1-2x)+3 | | -3(5x-1)-8=-95 | | 5(8a+5)=-175 | | 3(3x+6)-5(x+2)=x-22 | | b2-7b+10=0 | | X^2-9a^2=0 | | (0.08x)+x=17 | | 2x-27=104 | | (9x+7)(7x-6)=0 | | (5x-8)+(4x-1)=180 | | -4n-4+2n=-22 | | F(x)=8x^2+50x+63 | | 7-x=-2x-8 |